OptiGap: a customizable bend location sensor

Where is that thing bending? PhD student Paul Bupe has developed a prototyping system for determining where robots and other flexible structures are changing curvature. The OptiGap concept uses soft plastic 3d printing filaments as waveguides with gaps that let light out when bent. Not only is the system low cost and customizable on the …

Sensor stops slipping

Ph.D. student Michael Han has developed a new optoelectronic tactile sensor that enables robots to better emulate the grasping abilities of the human hand. The sensor, described in “Soft, All-Polymer Optoelectronic Tactile Sensor for Stick-Slip Detection,” combines a skin-like soft silicone material with a bristle friction model to provide not only normal force information, but …

Sensing pressure at the speed of light

In our latest paper, an optical pulse travels through a branched waveguide network. A ranging sensor made for consumer electronics is put to work measuring the arrival time distribution of the pulse after it splits and travels through branches with three different lengths. Rubber “switches” squeeze down on each branch when pressure is applied. This …

Soft optics

The fall Materials Research Society meeting was a hybrid of in-person and remote presentations. Here is our work on characterizing a soft, micromolded silicone layer for its pressure-dependent optical properties. Independent Study students Michael Portaro and Rio Brittany, both in ECE, developed different parts of the project during 2021. The end result was a material …