Fabric linear motor

We continue experimenting with patterning different types of fibers. When fine insulated wire is embroidered onto a piece of linen tape and supplied with a current, it interacts with magnets. Two sets of embroidered coils, one on top and one on the underside of the tape in this video, pull the tape to the left along an alternating magnet array when the coils are energized in a sequence. Flat embroidered coils near magnets are already used as speakers which can be thought of as a kind of actuator. The above tape is an example of a linear motor that is normally built from hard materials, except in a conventional linear motor, the magnetic part moves, and the coils stay still. Below, a single magnet hops along the coil, keeping to the center where the magnetic field is strongest. Here the coil switching rate is increased from 2 Hz in the tape video, to 5 Hz, and the magnet is able to keep up.

Tumbling tumbleweed

In an effort to create tiny holes in our molded rubber parts, we made these small salt crystals by adding concentrated saltwater to alcohol, which is a poor solvent for salt. Right away, it starts to snow 25-micron cubes. The cubes are added to liquid rubber, then dissolved out in water, creating voids–an approach that other groups have used successfully with larger particles like sugar, table salt and rock salt. But can you spot something that isn’t a cube? We had some acrylic microspheres show up in this electron microscope sample, the same material that’s used in acrylic manicures. We were checking out this acrylic powder as another type of sacrificial material to make tiny holes. These plastic spheres charge up easily and seem to get everywhere.

Fall 17 class roundup

The latest batch of ECE 412 (Embedded Systems) projects is now online. Check out the LED sign that now adorns our lab, the duct-tape based CyberHand and the sound-controlled ping pong tubes. The 14 projects also included a sorting hat, plus a different kind of sorting system based on a pressure sensor. While cardboard and tape are fine building materials for this class where we are mainly evaluating microcontroller skills, the laser at FirstBuild added a special touch to a few projects.

In ECE 473 (Electromagnetic Fields & Waves), which is normally a theory-based class, the fall students had an unusual assignment to build an electromagnetic train– and I was happy to see a few students making use of their MATLAB to plot the magnetic field along the coil. Our coils were short segments to get the basic idea, so here’s a much longer one from YouTube for inspiration. The set of videos from AmazingScience gives more details on fabrication and dimensions than most others.

Athletic tape that tracks your moves

Check out wireless optical stretch sensors in action in this video. We embedded a strain-sensitive elastic optical fiber into a piece of sticky, stretchy athletic tape that can track muscle stretching in real time. There is a single “U-turn” shaped fiber along with a detachable wireless module that can also collect acceleration and orientation data. With the addition of the optical strain sensor, our system can detect whether a muscle is passive or weight-bearing.

Fiber tutorial up at Soft Robotics Toolkit

Tutorial on installing fibers in 3D printed parts using an embroidery machine

Our tutorial is up at the Soft Robotics Toolkit website. It covers how to use an embroidery machine to add a patterned fiber layer to a 3D print, a circuit board, or a thin laser-cut part. It also describes how to use a 3D printed template for installing fibers that are too thick for the embroidery machine to handle. There’s a link to the Inkscape plugin for aligning patterns, plus some nifty alignment pegs Brian Wagner invented if you would rather laser-cut your template than do a large-area 3D print.